A new hybrid Lagrangian numerical scheme utilizing phase space grid for XGC1 edge gyrokinetic code

S. Ku

Princeton Plasma Physics Laboratory, USA

In collaboration with

R. Hager, C.S. Chang

Outline

- Tokamak edge plasmas and XGC1
- Total-f (full-f), conventional δf, and total-δf PIC
- New hybrid Lagrangian scheme
 - Needed for edge simulation (reduces weight-growth from wallloss, enables non-linear collision)
 - Use both particle and v-space-grid
 - Direct weight evolution
 - Used in XGC1/a for all physics
- Example in a simple ITG turbulence case
 - The α-factor and numerical dissipation
 - Homogeneous marker distribution in v-space

Tokamak Edge Plamsas

- Non-Maxwellian
 - Steep H-mode gradient
 - In-contact with wall
 - Strong turbulence level(δn/<n> ~ 10%)
- Sources and Sinks
 - Wall loss
 - Neutral atoms
 - Radiative cooling

XGC1: X-point included Gyrokinetic Code

- Uses experimental EFIT data
 - Magnetic fields
 - Divertor and limiter
- Fully nonlinear Fokker-Plank Landau collision on v-space grid
- Logical sheath to handle wall boundary
- Built-in neutral Monte-Carlo routine and atomic cross sections
- GPU+CPU hybrid capability
- Good weak and strong scaling to maximal capability of the leadership HPCs (titan, mira, and edison).

PIC simulation of Tokamak plamsas: Total-f vs conventional δf

- Total-f (Full-f): Solve f directly without manipulation
 - Df/Dt = C(f) + Source Sink
 - Original XGC1
- Conventional δf in Tokamak plasmas
 - $f = f_0(fixed analytically) + \delta f$

$$D\delta f = -\frac{D^* f_0}{D^* t} + C = -v_E \cdot \nabla f_0 + C$$

- No neoclassical (grad-B drift) free energy on RHS
- Scale separation between mean (f_o) and perturbed δf is assumed
- Main plasmas in most of core δf codes

Total-δf particle methods

- Total-δf
 - $f = f_0 + \delta f$

$$\frac{D\delta f}{Dt} = -\frac{Df_0}{Dt} + C + \text{Source} - \text{Sink}$$

- D/Dt contains all physics
- Mathematically identical to total-f
- Mean and perturbed physics are solved together
- Includes sources and sinks
- δf can can become large due to strong neocalssical drive, wall loss, sources, or long time evolution.
 - → Growing weight and noise problem
- Difficult to handle wall loss and non-linear collision

Comparison between total-f and total-δf

[Ku et al., Nuclear Fusion 2009]

- Non-flux driven→ solutions decay
- Transient behavior is different, caused by the different Monte-Carlo noise level, but time integrated heat flux is the same
- Meaningful steady state solutions agree.

New hybrid Lagrangian scheme

- Solve total-δf eq.
- $f = f_0 + f_P = f_a + f_g + f_P$, enables edge simulation
- f₀ contains slowly varying physics in time.
- f_a is a fixed analytic distribution function (e.g. Maxwellian).
- f_q is deviation from f_a on 5D grid.
- f_P represents δf particles, driven by the free energy in f_a and f_q.
- All physics information on continuum grid, with f_p moved to v-grid.

New hybrid Lagrangian scheme

- Time evolution:
 - Step 1 : Solve particle motion and weight evolution as in the total- δf scheme + S operation in v-grid

$$\frac{Df_P}{Dt} = -\frac{D(f_a + f_g)}{Dt} + S(v-grid)$$

– Step 2 : Redefine f_P and f_g with the following operation (α <<1)

$$f_P \leftarrow [1 - \alpha(X, V)]f_P$$
, $f_g \leftarrow f_g + \alpha(X, V)f_P$

Slowly varying in time

Fast varying in time

Direct weight evolution

Gyrokinetic Vlasov-Boltzman eq.
$$\frac{Df_p}{Dt} = -\frac{Df_0}{Dt} + S(f)$$

Differential form of weight evolution (2 weights, Hu and Kromess)

$$\frac{dw_1}{dt} = \frac{(1-w_2)}{f_0} \left[\frac{Df_0}{Dt} + S \right] \qquad \frac{dw_2}{dt} = \frac{(1-w_2)}{f_0} \frac{Df_0}{Dt}$$

$$\frac{dw_2}{dt} = \frac{(1 - w_2)}{f_0} \frac{Df_0}{Dt}$$

- Similar to Y. Chen PoP (1997) and W. Wang PPCF(1999) except for deterministic particle motion from continuum collision.
- **Direct weight evolution (new)**

$$\frac{(1-w_2)}{f_0} = \text{constant}$$

$$\frac{(1-w_2)}{f_0} = \text{constant} \qquad \Delta w_1 = \Delta w_2 + S \frac{(1-w_2)}{f_0} \Delta t$$

- Maker particles conserve phase space density
 - Unlike conventional δf: Due to inaccuracy in D*/D*t operation
- Avoid w₂ errors from time integrator and D/Dt error from gradient

Weight evolution of wall loss

- Marker particle is reflected at wall
 - Elastic reflection
 - Conserve phase space volume
 - w₂ remains the same
 - cf. reflection by sheath potential
- f=0 with wall loss
 - Reflected marker particle cancels f₀

$$w_1 = -1 + w_2$$

$$\begin{aligned}
f &= f_0 + w_1 g = 0 \\
(1 - w_2)g &= f_0
\end{aligned}$$

Advantage in continuum grid

- Weight reduction using v-space f_g
- Continuum space physics operation with f_p moved to continuum grid
 - Nonlinear collision
 - Neutral ionization and C-X
 - Radiation

ITG turbulence in cyclone geometry

- Collisionless
 - Collision capability presented by R. Hager
- 0.3M real space grid
- 32 by 31 v-space grid
 - Slow physics on v-grid
- 400M particles
 - 1500 ptls/real space grid
 - 1.5 ptls/v-space grid
 - Fast physics in the particles

α factor and numerical dissipation

- Non-flux driven, total-deltaf
- Particle → v-space operation gives numerical dissipation from interpolation (damping of Landau resonance).
- Too large α reduces turbulence and time integrated heat flux
- Optimal $\alpha \sim C(\Delta v) \Delta t/[turbulence corelation time scale]$

V-space grid resolution also matters

- Fine grid: v-space grid from 32 x 31 to 62 x 61
- Reduced numerical dissipation in v-space \rightarrow restore original heat flux even at $\alpha = 0.004$

Homogeneous probabilistic marker initialization in vspace for better statistics at higher energy

Number of particles in v-space cells

Maxwellian distribution

Homogeneous distribution

Homogeneous Marker distribution in v-space and greater # of particles can allow bigger α

- Homogeneous marker distribution gives better statistics
- Maxwellian distribution resembles less # ptls results

Particle Noise Reduction

- Variance of w₁g in v-space cell (g : Marker distribution)
- $\alpha = 0.001 \rightarrow \text{reduce particle noise variance by 4 in 1500 time steps.}$
- Particle noise reduction

Flux driven simulation

- Heat and cooling is applied to near axis and edge
- Close to steady state
- α=0 and α=0.001 converges to similar gradient.
- Time integrated heat flux is different for α =0.01 from α =0.

Summary

- A new hybrid Lagrangian scheme for gyrokinetic simulation of tokamak edge plasma is implimented in XGC1.
 - Combination of particle and continuum
 - Lagrangian particle push
 - Difficult physics operation and noise reduction in continuum space
 - Direct weight evolution and homogeneous marker distribution help simulation accuracy
- The new scheme is equivalent to 'total-f' with
 - Sources and Sinks
 - Non-maxwellian distribution
- f_{particle} is slowly converted to f_{v-grid}.
 - Slow time varying function → v-space grid
 - Fast time varying function remains in particles
 - Magnitude of α depends upon Δv and particle number.
 - The new scheme relaxes growing weight problem.

